Dr.Ahmad Al-Qawasmi

Biology

Chapter 10 Cellular Respiration and Fermentation

Introduction

- Photosynthesis generates O₂ and organic molecules
- Animals can obtain energy to do this work by **feeding** on other animals or . photosynthetic organisms
- Energy flows into an ecosystem as sunlight and leaves as heat

Glucos

2 ADP + 2 P

4 ATP formed

2 NADH + 2 H*

2 Pyruvate + 2 H₂O

2 NADH + 2 H

2 ATP

2 Pyruvate + 2 H₂C

2 ATP used

4 ADP + 4 P

Glucose

2 NAD+ + 4 e- + 4 H+

Energy Payoff Phase

10.1: [Catabolic pathways yield energy by oxidizing organic fuels]

- Catabolic pathways: release stored energy by breaking down complex molecules
- Organic compounds **possess potential energy** as a result of the arrangement of electrons in the bonds between their atoms \rightarrow as these complex molecules are degraded into simpler products (less energy)
 - Fermentation: It is a partial degradation of sugars that occurs without O₂ ο
 - Aerobic respiration: consumes organic molecules and $O_2 \rightarrow$ yields ATP, it is the <u>most efficient</u> catabolic process \rightarrow occurs in most eukaryotic and many prokaryotic
 - Anaerobic respiration: It is similar to aerobic respiration but consumes compounds other than O₂ $(doesn't use O_2) \rightarrow occurs in prokaryotes$
- Cellular respiration includes both aerobic and anaerobic respiration but is often used to refer to . aerobic respiration
- The overall process of cellular respiration can be summarized as follows:

Organic compounds + Oxygen → Carbon dioxide + Water + Energy

- Although carbohydrates, fats, and proteins are all consumed as fuel, it is helpful to trace cellular . respiration with the sugar glucose $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + Energy (ATP + heat)$
- This breakdown of glucose is exergonic with $\Delta G = -686$ kcal/mol \rightarrow the products of the chemical process store less energy than the reactants
- Not all energy released from the breakdown of organic molecules is stored into chemical energy . (ATP), there is apart that is dissipated as heat
- Transfer of electrons during chemical reactions releases energy stored in organic molecules which is • used to synthesize ATP Energy Invest
- Redox Reactions: Chemical reactions involve the transfer of one or more electrons (e⁻) from one reactant to another (oxidation & reduction)
 - **Oxidation:** a substance loses electrons \rightarrow increase the positive charge of the substance
 - **Reduction:** a substance gains electrons \rightarrow reduce the positive charge of the substance

- Reducing agent: The electron donor (which get oxidized)
- Oxidizing agent: The electron receptor (which get reduced)

- Some redox reactions don't actually transfer electrons but <u>change the electron sharing in covalent</u> bonds (For example, the reaction of methane with O₂)
 Reactants
 - The two atoms of the oxygen molecule (O₂) share their electrons equally → But when oxygen reacts with the hydrogen from methane, forming water, the electrons of the covalent bonds spend more time near the oxygen → each oxygen atom has partially gained electrons, so the oxygen molecule has been reduced

- There is <u>no</u> oxidation reaction <u>without</u> a reduction reaction
- Oxygen is one of the most powerful of all oxidizing agents because it has very high electronegativity
- Energy must be added to pull an electron away from an atom
 - The <u>more electronegative</u> the atom (the stronger its pull on electrons) → the <u>more energy</u> is required to take an electron away from it
 - An electron <u>loses potential energy</u> when it shifts from a less electronegative atom toward a more electronegative one → so redox reactions that moves electrons closer to oxygen (such as the burning/oxidation of methane) releases chemical energy that can be put to work
- During cellular respiration:
 - ➤ The fuel (such as glucose) → is oxidized
 - \triangleright O₂ \rightarrow is reduced
 - ➤ The electrons → lose potential energy along the way, and energy is released
- Organic molecules with an abundance of hydrogen are excellent sources of high-energy electrons
 - Because their bonds are a source of <u>hilltop electrons</u>, whose energy may be released as these electrons fall down an energy gradient during their transfer to oxygen
 - Because H has a very low electronegativity
- Energy is released as the electrons (associated with hydrogen in the form of C—H bonds) are transferred to oxygen (become more stable, a lower energy state) $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + Energy$
- In cellular respiration organic molecules (such as glucose) are broken down series of steps (pathways)
- Each <u>electron travels with a proton</u> as a hydrogen atom → the hydrogen atoms are not transferred directly to oxygen → they are usually passed first to an <u>electron carrier</u> (such as NAD⁺) functions as oxidizing agent (get reduced)
 - NAD⁺: It is a <u>coenzyme</u> called Nicotinamide Adenine Dinucleotide, a derivative of the vitamin niacin (vitamin B3)
 - This coenzyme can cycle easily between its oxidized form (NAD⁺), and its reduced form (NADH)
 - o Each NADH represents stored energy that is tapped to synthesize ATP
- Dehydrogenases: Enzymes that remove a pair of hydrogen atoms (2 electrons and 2 protons) from the substrate (such as glucose), then the enzyme get oxidized by delivering the 2 electrons with 1 proton to its coenzyme NAD⁺ → forming NADH
 H⁻C⁻OH + NAD⁺
 Dehydrogenase C⁻OH + NAD⁺
 - > The other proton is released as a hydrogen ion (H+) into the surrounding solution

- NADH passes the electrons to electron transport chain (ETC):
 - An electron transport chain (ETC) consists of a number of molecules, <u>mostly proteins</u>, built into the <u>inner membrane of the mitochondria</u> of **eukaryotic cells**
 - In respiring prokaryotes ETC found in their plasma membrane (they don't have mitochondria)
- ETC passes electrons in series of steps (controlled reaction) not in an explosive reaction
 - ➤ Electrons removed from glucose are shuttled by NADH to the top (higher-energy end of the chain) → at the bottom (lower-energy end) → O₂ captures these electrons along with hydrogen nuclei (H⁺) → forming water

- ▶ O₂ (has a very great affinity for electrons) pulls electrons down the chain → the energy yielded is used to regenerate ATP
- In cellular respiration, the hydrogen that reacts with oxygen is derived **from organic molecules** rather than H₂
- Electron transfer from NADH to oxygen is an exergonic reaction
 - Free-energy change= -53 kcal/mol (-222 kJ/mol)
- During cellular respiration, most electrons travel the following downhill route:

Glucose \rightarrow NADH \rightarrow electron transport chain \rightarrow oxygen

- Harvesting of energy from glucose has three stages (stages of cellular respiration):
 - 1) **Glycolysis** \rightarrow breaks down glucose into two molecules of pyruvate
 - 2) Citric acid cycle \rightarrow completes the breakdown of glucose
 - Oxidative phosphorylation → accounts for most of the ATP synthesis (almost 90% of the ATP because it is powered by redox reactions)
- Glycolysis and the citric acid cycle generate a smaller amount of ATP by substrate-level phosphorylation
- **Substrate-level phosphorylation:** ATP synthesis occurs using an enzyme that transfers a <u>phosphate group from a substrate molecule to ADP</u>
- In oxidative phosphorylation → adding an inorganic phosphate to ADP
- For each molecule of glucose degraded to CO₂ and water by respiration, the cell makes up to 32 molecules of ATP

- Before the citric acid cycle can begin, pyruvate must be converted to acetyl coenzyme A (acetyl CoA), which links glycolysis to the citric acid cycle
- This step is carried out by a multienzyme complex that catalyzes three reactions:
 - 1. <u>Oxidation</u> the carboxyl group in pyruvate and release of CO₂
 - ✓ This is the <u>first</u> step in which CO₂ is released during respiration
 - 2. The remaining 2 carbon fragment is oxidized and transfer electrons to NAD⁺ forming NADH
 ✓ Reduction of NAD⁺ to NADH
 - 3. <u>Coenzyme A is attached</u> via its sulfur atom to the 2 carbon intermediate forming acetyl CoA
- Coenzyme A (CoA): a sulfur-containing compound derived from a B vitamin and it has a high potential energy
- The net products of **oxidation of Pyruvate are:**
 - o For each pyruvate \rightarrow 1 CO₂ / 1 NADH / 1 Acetyl CoA
 - For each glucose molecule \rightarrow 2 pyruvate
 - \rightarrow 2 CO₂ / 2 NADH / 2 Acetyl CoA
- No ATP yielding in this step

• The Citric Acid Cycle

- The citric acid cycle (also called the *Krebs cycle* and *Tricarboxylic acid (TCA) cycle*)
- Pyruvate is broken down into 3 CO₂ molecules
 - > One of them released in the pyruvate oxidation
 - > Other 2 molecules are released in the citric acid cycle
- The citric acid cycle has eight steps, each catalyzed by a specific enzyme:
 - The acetyl group of acetyl CoA joins the cycle by combining with oxaloacetate, forming citrate (the ionized form of citric acid)
 - **2.** Citrate is converted to its isomer \rightarrow isocitrate (by removal of one H₂O and addition of another)
 - **3.** Isocitrate oxidized forming a-ketoglutarate \rightarrow reducing NAD⁺ to NADH and release CO₂
 - 4. It reduces NAD⁺ to NADH and releases CO_2 but oxidizes α -ketoglutarate to succinyl CoA
 - **5.** CoA is displaced by phosphate group \rightarrow then it is transferred to GDP forming **GTP** (which function like ATP or it can form **ATP** itself) \rightarrow and forming **succinate**
 - 6. <u>2 Hydrogens</u> transferred to FAD forming FADH₂ and forming fumarate
 - 7. Addition water to convert Fumarate to malate
 - 8. Oxidizing malate to form oxaloacetate and reducing NAD⁺ to NADH
 - \blacktriangleright Oxaloacetate is regenerated \rightarrow that makes the process a cycle
- The <u>NADH and FADH₂</u> produced by the cycle relay <u>electrons extracted</u> from food to the electron transport chain
- The cycle generates ATP by substrate-level phosphorylation
- The net products of the citric acid cycle
 - o For each cycle (each pyruvate molcule) \rightarrow 3 NADH / 1 FADH₂ / 1 ATP (or GTP) / 2 CO₂
 - o For each glucose \rightarrow 6 NADH / 2 FADH₂ / 2 ATP (or GTP) / 4 CO₂

- catalytic functions of certain enzymes
- Electron carriers alternate between reduced and oxidized states as they accept and donate electrons
 - Each component of the chain **becomes reduced** → when it accepts electrons from its uphill neighbor, which has a lower affinity for electrons (less electronegative)
 - o As it passes electrons to its downhill (more electronegative neighbor) It returns to its oxidized form
- The source of electrons for the chain are → electrons carried by NADH and FADH₂
- The electron transport chain makes no ATP directly
- During this electron transport:
 - o NADH adds its electrons to <u>flavoprotein</u> in <u>complex I</u>
 - o FADH₂ adds its electrons from within complex II
 - > FADH adds its electrons at a lower energy level than NADH
- The pathway of electrons:
 - NADH → Complex I (FMN → Fe.S) → ubiquinone → Cytochromes (in Complexes III then IV) → Cyt a3 (the last cytochrome) → O₂
 - 2. FADH₂ \rightarrow Complex II (Fe.S) \rightarrow ubiquinone \rightarrow Cytochromes \rightarrow Cyt a3 \rightarrow O₂

- Flavoprotein: The first molecule of the electron transport chain → its prosthetic group is FMN (Flavin MonoNucleotide)
- Fe.S: An iron-sulfur protein with both iron and sulfur (prosthetic group) tightly bound to it
- Ubiquinone (coenzyme Q or CoQ): A small hydrophobic molecule, the only member of the electron transport chain that is <u>not a protein</u> and it is mobile
- Cytochromes (Cyt): Electron carriers (between <u>ubiquinone & oxygen</u>) composed of proteins with heme as a prosthetic group, the last one (before O₂) is Cyt a3 which is very electronegative
 - > Heme: It is a prosthetic group has an iron atom that accepts and donates electrons
- Finally, each oxygen atom picks up the **electrons** with **pair of hydrogen** ions (<u>2 protons</u>) from the aqueous solution, neutralizing the -2 charge of the added electrons and → forming water
- NADH and FADH₂ each donate an <u>equivalent number</u> of electrons (2e⁻) for oxygen
 - BUT the electron transport chain provides about one-third less energy for ATP synthesis when the electron donor is FADH₂ rather than NADH
 - The heme group in a cytochrome is similar to the heme group in hemoglobin, the protein of red blood cells, except that the iron in hemoglobin carries oxygen, not electrons
- Electron transport chain breaks the large free-energy drop from food to O₂ into smaller steps that release energy in manageable amounts (step by step)
 - Chemiosmosis: The Energy-Coupling Mechanism
- ATP synthase: It is an enzyme that make ATP from ADP and inorganic phosphate
 - > It is a **multisubunit** complex with **four** main parts
 - Resides in the inner membrane of the mitochondrion in eukaryotes, and in the plasma membrane in prokaryotes
- ATP synthase <u>uses the energy of the concentration gradient of H⁺ (protons) to power ATP synthesis</u> (Reversible to ion pumps which hydrolyze ATP to move ions against their gradients):
 - The energy released as electrons are passed down the electron transport chain → is <u>used to pump H⁺</u> from the mitochondrial matrix to the intermembrane space
 - o H⁺ then moves down its concentration gradient back across the membrane → passing through the protein complex ATP synthase
 - H⁺ moves into binding sites on the rotor of ATP synthase, causing it to spin in a way that catalyzes phosphorylation of ADP to ATP
- Chemiosmosis: It is the use of proton (H⁺) gradient to power cellular work such as ATP synthesis
 ✓ The word osmosis refers to the flow of H⁺ across a membrane
- The energy stored in an H⁺ gradient across a membrane <u>couples</u> the redox reactions of he electron transport chain to ATP synthesis. How?
 - The chain is an energy converter that uses the exergonic flow of electrons from NADH and FADH₂ to pump H⁺ across the membrane, from the mitochondrial matrix into the intermembrane space
 - The H⁺ has a tendency to move back across the membrane, diffusing down its gradient → the passage of H⁺ through ATP synthase uses the <u>exergonic flow of H+ to drive the phosphorylation of</u> <u>ADP</u>

- How the electron transport chain pumps hydrogen ions?
 - certain members of the electron transport chain accept and release protons (H⁺) along with electrons
- Proton-motive force: It is the H⁺ gradient that is used to perform cellular work
 - In prokaryotes, the H⁺ gradient is used to do work such as <u>rotate their flagella</u> and to <u>pump nutrients and waste products</u> across membrane
- During cellular respiration, energy flows in the sequence:
 - ▶ Glucose \rightarrow NADH \rightarrow electron transport chain \rightarrow proton-motive force \rightarrow ATP
 - An Accounting of ATP Production by Cellular Respiration
- About **34% of the energy in a glucose molecule is transferred to ATP** during cellular respiration, making about **32 ATP**
 - ✓ The rest of the energy is lost as heat
- There are 3 reasons why the number of ATP is not known exactly:
 - Photophosphorylation and the redox reactions are **not directly coupled** → so the ratio of NADH to ATP molecules is not a whole number
 - o ATP yield depends on whether electrons are passed to NAD⁺ or FAD in the mitochondrial matrix
 - o The proton-motive force is also used to drive other kinds of work
- Each NADH molecule when transfers its 2e- is responsible for the pump of 10 H⁺ protons and so the production of energy enough to synthesis → 2.5 ATP molecule
- If the NADH came from the cytosol (glycolysis) it will lead to the production of 1.5 ATP
 - Because of energy consumed in the active transport to shuttle NADH from cytosol to the matrix of the mitochondria (The mitochondrial inner membrane is <u>impermeable</u> to NADH)
- Each FADH₂ is responsible for the pump of 6 H⁺ (protons) and lead to the synthesis of \rightarrow 1.5 ATP
- If all the proton-motive force generated by the ETC were used to drive ATP synthesis:
 - One glucose molecule could generate a maximum of 28 ATP produced by oxidative phosphorylation + 4 ATP from substrate-level phosphorylation -> to give a total yield of about <u>32 ATP</u> (or only about 30 ATP if the less efficient shuttle were functioning)

10.5: [Fermentation and anaerobic respiration enable cells to produce ATP without the use of oxygen]

- Most cellular respiration depends on electronegative oxygen to pull electrons down the transport chain and without oxygen, the electron transport chain will cease to operate
- There are 2 general mechanisms by which certain cells can oxidize organic fuel and generate ATP without the use of oxygen:

1) Anaerobic respiration

- In certain prokaryotic organisms that live in environments without oxygen & use ETC
 - Instead of oxygen they use other <u>electronegative molecules such as SO⁻²</u>
 - > The molecules used instead of O are <u>less electronegative</u> (less efficient)
 - In the case of SO⁻² the H₂S is made rather than water as a by-product and that happens in sulfate-reducing marine bacteria
 - <u>H₂S has a rotten-egg odor</u>

2) Fermentation

- It is a way of harvesting chemical energy without the use of O_2 or ETC \rightarrow so without cellular respiration
- Uses substrate-level phosphorylation only instead of an ETC to generate ATP
 - In the aerobic conditions (with O₂) → NADH transfers its electrons to the ETC to generates additional ATP by oxidative phosphorylation
 - NAD⁺ is recycled by transferring electron of NADH to ETC
 - > In anaerobic conditions (without O_2) \rightarrow generates ATP by substrate-level phosphorylation
 - NAD⁺ is recycled by transferring electron of NADH to pyruvate or one of its derivatives

2 ADP + 2(P)

2 NAD

(a) Alcohol fermentation 2 ADP + 2 (F

=0

CH.

2 Lactate

2 NAD

(b) Lactic acid fermentation

2 NAD

2 Acetaldehvde

NAD* REGENERATION

NAD+ REGENERATION

Glucose

CH.

2 Ethanol

• The electron transport chain is also called the **respiratory chain** because of its role in both types of cellular respiration

Types of Fermentation

- Fermentation consists of glycolysis + reactions that regenerate NAD⁺ which can be reused by glycolysis
- There are 2 types of fermentation they differ in the end product formed from pyruvate:

A. Alcohol fermentation

- Pyruvate converted to <u>Ethanol</u> in <u>2 steps</u>: (Pyruvate → Acetaldehyde → Ethanol)
 - <u>Release CO₂ from pyruvate so it is converted into two carbon</u> compound **acetaldehyde**
 - Acetaldehyde is reduced by NADH into ethanol & regenerate NAD⁺
- Many bacteria carry out alcohol fermentation
- yeast (fungus) carries out alcohol fermentation in addition to aerobic respiration → yeast is used in <u>brewing</u>, <u>winemaking and baking</u>

B. lactic acid fermentation

- **Pyruvate** is reduced **directly** by NADH to form **lactate** as an end product <u>with</u> <u>no release of CO2</u>
- Lactate is the ionized form of lactic acid
- It occurs by some fungi and bacteria is used to make cheese & yogurt
- Human muscle cells make ATP by lactic acid fermentation when O₂ is scarce

- In strenuous exercise → O₂ supply isn't enough related to the high consumption → so <u>cells switch from</u> respiration to fermentation
- The fatigue and pain after extensive exercise is due to **lactate accumulation** → during an hour lactate is transported by blood to the liver and regenerate pyruvate
- Fermentation, anaerobic respiration, and aerobic respiration are three alternative cellular pathways for producing ATP by harvesting the chemical energy of food
 - > All of them use glycolysis (net ATP = 2) by substrate-level phosphorylation to oxidize glucose
 - > NAD⁺ is the oxidizing agent that accepts electrons during glycolysis
- The processes have <u>different mechanisms for oxidizing NADH to NAD+</u>:
 - In fermentation → an <u>organic molecule</u> (such as pyruvate or acetaldehyde) acts as a <u>final electron acceptor</u> and produces 2 ATP per glucose molecule
 - In cellular respiration → electrons are transferred to the <u>electron</u> <u>transport chain</u>, which regenerates the NAD⁺ required for glycolysis, and produces 32 ATP per glucose molecule

- > In aerobic respiration, the final electron acceptor is oxygen
- In anaerobic respiration, the final acceptor is another electronegative molecule, but it is less electronegative than oxygen
- Organisms are classified into:
 - 1. Obligate anaerobe: Carry out only fermentation or anaerobic respiration
 - They <u>can't survive in the presence of $O_2 \rightarrow$ the presence of O_2 may be **toxic** for those organisms if protective systems aren't present</u>
 - 2. Obligate aerobe: Can only carry out aerobic respiration such as vertebrates' brain
 - 3. Facultative anaerobe: Can make enough ATP to survive by either fermentation or respiration → such as yeasts, many bacteria and our muscle cells
 - ➤ In a facultative anaerobe pyruvate is a fork in the metabolic pathway that leads to 2 alternative catabolic routes → under aerobic conditions and under anaerobic condition
- Early prokaryotes used glycolysis to produce ATP before O2 accumulated in the atmosphere
- Glycolysis is an ancient process & it is the most widespread metabolic pathway on Earth
- It occurs in the cytosol so does not require the membrane-bound organelles of eukaryotic cells

10.6: [Glycolysis and the citric acid cycle connect to many other metabolic pathways]

- Glycolysis and the citric acid cycle are major **intersections** of the cell's <u>catabolic (breakdown) and</u> <u>anabolic (biosynthetic) pathways</u>
- Free glucose isn't common in the diets of human and animals
- We obtain most of the calories in the form of fats, proteins & carbohydrates → these molecules can be used by cellular respiration to make ATP
- <u>Catabolism of different molecules:</u>
 - 1- Starch and glycogen:
 - > They are <u>hydrolyzed to glucose</u> that can be broken down by **glycolysis**

2- Proteins

- ➤ They can also be used as fuel → but first they must be digested to their amino acids
- Amino acids present in excess are converted by enzymes to <u>intermediates of glycolysis and the</u> <u>citric acid cycle</u>
- Before amino acids can feed into glycolysis or the citric acid cycle, their amino groups must be removed, a process called deamination
- The nitrogenous waste is excreted from the animal in the form of ammonia (NH₃), urea, or other waste products

 Proteins
 Carbohydrates
 Fa

3- Fats

- Also can used in respiration after they are digested into glycerol and fatty acid
- **Glycerol** converted into **G3P** (glycolysis intermediate)
- ➤ Most energy of fats is stored in fatty acids → they are metabolized by Beta oxidation into two carbon fragments which enter Kreb's cycle as acetyl CoA
- Beta oxidation: Metabolizing of fatty acids into fragments consisting of 2 carbons and it produces NADH and FADH₂ passing its electrons to ETC leading to further ATP production
- > A gram of fats oxidized will produce more than twice from a gram of carbohydrates

• Biosynthesis (Anabolic Pathways)

- Metabolism is remarkably versatile and adaptable
- Not all the organic molecules of food are destined to be oxidized as fuel to make ATP → the body uses small molecules from food to build up other molecules
 - o For example, as amino acids are used to build proteins
 - Also the intermediates of glycolysis and citric acid cycle can be used as precursors for other molecules in the anabolic pathways intermediates
- Our bodies can **synthesize half of the 20** amino acids by modifying compounds from Kreb's cycle but the **rest are essential** amino acids can be <u>obtained only from diet</u>
- Glucose can be synthesized from pyruvate, and fats can be synthesized from acetyl CoA → these are anabolic (biosynthetic) pathways that consume ATP
- **Dihydroxyacetone phosphate** (an intermediate compound generated during glycolysis), can be converted to one of the major precursors of **fats**

Regulation of Cellular Respiration via Feedback Mechanisms

- The cell does not waste energy making more of a particular substance than it is needed
- If there is a <u>surplus (excessive) of a certain product</u> → the anabolic pathway that synthesizes that product is **switched off**
- The most common mechanism for this control is feedback inhibition
 - If ATP concentration begins to <u>drop</u>, respiration <u>speeds up</u>
 - When there is <u>plenty (many)</u> of ATP, respiration <u>slows down</u>

- The regulation of the 3rd step of glycolysis controls the rate of the entire catabolic process
 - > This step is catalyzed by Phosphofructokinase which is considered the pacemaker of respiration
 - ➤ It is inhibited by ATP → slows down glycolysis (decrease its rate)
 - > It is stimulated by AMP (adenosine monophosphate), which the cell derives from ADP
 - > It is active as cellular work converts <u>ATP to ADP (and AMP)</u> faster than ATP is being regenerated
- Also phosphofructokinase sensitive to <u>citrate</u> (the first product of the citric acid cycle)
 - ➤ If citrate accumulates in mitochondria, some of it passes into the cytosol and inhibits phosphofructokinase → glycolysis slows down, and the supply of pyruvate and thus acetyl groups to the citric acid cycle decreases
 - ➤ If citrate consumption increases (either because of a demand for more ATP or because anabolic pathways are draining off intermediates of the citric acid cycle) → glycolysis accelerates and meets the demand
- Phosphofructokinase is an <u>allosteric</u> enzyme with receptor sites for specific inhibitors and activators
- Respiration <u>doesn't produce energy</u> but **releases it** (converts energy from a form into other forms)

Past Papers

1.	 The figure shows: A. Chemiosmosis B. Substrate level phosphorylation C. Electrochemical gradient D. Oxidative phosphorylation E. Electron transport chain creating a proton motive force 	HAD- CH-YO, ADP+P1
2.	What is correct about the electron transport chain in anaerobic r	Answer: D
2.	 A. Can use oxygen as a final electron acceptor B. Occurs in aerobic bacteria C. Occurs in some prokaryotes D. It is the fermentation of glucose E. B and C are correct 	Answer: C
		· · · ·
3.	Which of the following statements describes the results of this re	eaction?
	$C_6H_{12}O_6 + 6 O_2 \rightarrow 6 CO_2 + 6 H_2O + En$	ergy
	 A. C₆H₁₂O₆ is oxidized and O₂ is reduced B. O₂ is oxidized and H₂O is reduced C. CO₂ is reduced and O₂ is oxidized D. C₆H₁₂O₆ is reduced and CO₂ is oxidized E. O₂ is reduced and CO₂ is oxidized 	Answer: A
4.	In alcohol fermentation, NAD ⁺ is regenerated from NADH by:	
	 A. Reduction of acetaldehyde into ethanol B. Oxidation of pyruvate to acetyl CoA C. Reduction of pyruvate to lactate D. Oxidation of ethanol to acetyl CoA E. Reduction of ethanol to pyruvate 	Answer: A
5.	 What is the purpose of beta oxidation? A. Breaking down of glucose into 2 pyruvate molecules B. Breaking down of fatty acids into two carbon fragments C. Converting of glucose to fatty acid D. Converting of fatty acid to protein E. None of the above 	Answer: B
6.	 In cellular respiration, energy flows in the sequence: A. Glucose - NAD+- electron transport chain - ATP B. Glucose - NADH - electron transport chain - proton motive for C. Glucose - NADH - electron transport chain- O2 D. NADH - glucose - pyruvate - Krebs cycle - H2O E. Pyruvate - Acetyl CoA- Flavoprotein – ADP 	rce – ATP Answer: B

7. Which of the following statements corre	ctly describes the activity of Phosphofructok	inase?
A. It is inhibited by AMP		
B. It is activated by ATP		
C. it is activated by Citrate		
D. It catalyzes the conversion of fructos	se into fructose 6-phosphate	Answer: F
E. It is inhibited by citrate		
8. Upon oxidation of pyruvate to acety CoA	, the product compound No 1 in the red circ	le :
A. NADH	CYTOSOL MITOCHONDRION	
B. Coenzyme A	, H +	
C. Acetate		
D. acetyl coenzyme A		
E. carbon dioxide		Answer: E
	Pyruvate	
9. In addtion to ATP, what are the end proc	ducts of glycolysis?	
A. CO_2 and H_2O		
B. CO ₂ and pyruvate		
C. H ₂ O, NADH and pyruvate		
D. CO ₂ and NADH		
E. H ₂ O, FADH ₂ and citrate		Answer: C
10. Carbon dioxide (CO₂) is released during v A. Glycolysis and the oxidation of pyruv	which of the following stages of cellular respinate to acetyl CoA	iration?
B. Oxidation of pyruvate to acetyl CoA a	and the citric acid cycle	
C. The citric acid cycle and oxidative photon	osphorylation	
D. Oxidative phosphorylation and ferme	entation	
E. Fermentation and glycolysis		Answer: B
11. Almost all of the oxygen (O ₂) consumed	in breathing is converted to:	
A. acetyl-CoA		
B. water		
C. Carbon dioxide (CO ₂)		
D. ATP and NADH		
E. Pyruvate		Answer: B
,		
12. The starting molecule in the citric acid cy	cle that reacts with Acetyl CoA and is regene	erated at the end
of the cycle:		
A. Succinate		
B. Fumarate		
C. Alpha-ketoglutarate		
D. Oxaloacetate		,
E. Pyruvate		Answer: D

19. Pro	duction of ATP direct transfer of phosphate group from an organic substrate to AD	P by enzymes is
	Ovidative phosphorylation	
A. B	Substrate-level phosphorylation	
D.	Photophosphorylation	
С. D	R. Ovidation	
D. E	Desmination	Answer: B
L.	Dearmination	
20. Wh	ich of the following is true about (Phosphofructokinase enzyme)?	
Α.	It is the "Pacemaker" of cellular respiration	
В.	It is inhibited by Citrate	
C.	It is inhibited by ATP	
D.	It is stimulated by AMP	
E.	All of the above are correct	Answer: E
21. In e	electron transport chain, NADH passes its electrons to:	
Α.	Ubiquinone (Q)	
В.	Cytochrome c	
C.	Cytochrome a3	
D.	Flavin mononucleotide (FMN)	
E.	Cytochrome a	
22. Wh	ich metabolic pathway is common to both fermentation and cellular respiration of	a glucose
mo	lecule?	0
А.	The citric acid cycle	
В.	The electron transport chain	
C.	Glycolysis	
D.	Synthesis of acetyl CoA from pyruvate	
E.	Reduction of pyruvate to lactate	Answer: C
22 M/h	and in ATD sumbles as to stand in the suite should in 2	
23. WN	ere is ATP synthase located in the mitochondrion?	
А.		
В.	Electron transport chain	
C.	Outer membrane	
D.	Inner membrane	Answer: D
E.	Mitochondrial matrix	
24. In l	iver cells, the inner mitochondrial membranes are about five times the area of the	outer
mit	ochondrial membranes, what purpose must this serve?	
Α.	It allows for an increased rate of glycolysis	
В.	It increases the surface for substrate-level phosphorylation	
C.	It allows for an increased rate of the citric acid cycle	
D.	It increases the surface for oxidative phosphorylation	
E.	It increases the area for glycogen storage	Answer: D

25. Wh	en a molecule of NAD ⁺ (nicotinamide adenine dinucleotide) gains a hydrogen atom	, the molecule
bec	Debudees:	
A.	Denydrogenated	
В.	Oxidized	
C.	Reduced	
D.	Redoxed	Answer: C
E.	Hydrolyzed	
26. Wh	en a glucose molecule loses a hydrogen atom as the result of an oxidation-reductio	n reaction, the
mo	lecule becomes:	
Α.	Hydrolyzed	
В.	Hydrogenated	
C.	Oxidized	
D.	Reduced	Answer: C
E.	An oxidizing agent	
27. Ene	ergy released by the electron transport chain is used to pump H^+ into which location	in eukaryotic
cell		
A.	Cytosol	
В.	Mitochondrial outer membrane	
C.		
D.	Mitochondrial intermembrane space	Answer: D
E.	Mitochondrial matrix	
28. Hov	w does pyruvate enter the mitochondrion?	
Α.	Active transport	
В.	Diffusion	
C.	Facilitated diffusion	
D.	Through a channel	
E.	Through a pore	Answer: A
29. The	e number of NADH molecules produced from oxidation of one pyruvate to acetyl Co	A and further
oxi	dation in Kreps cycle is:	
Δ	3 NADH	
B B	6 NADH	
C.	4 NADH	
e. D	8 NADH	
F.	None of the above	Answer: C
с.		
30. In g	lycolysis, for each molecule of glucose oxidized to pyruvate:	
Α.	Two molecules of ATP are used, and two molecules of ATP are produced	
В.	Two molecules of ATP are used, and four molecules of ATP are produced	
C.	Four molecules of ATP are used, and two molecules of ATP are produced	
D.	Two molecules of ATP are used, and six molecules of ATP are produced	
E.	Six molecules of ATP are used, and six molecules of ATP are produced	Answer: B

	n in mitochondria
A. Flavoprotein	
B. CoQ (Obiquinone)	
C. Cytochrome C	
D. Cytochrome a3	Answer: D
E. Iron sulphur protein	
32. Which of the following factors control the cellular respiration?	
A. Intracellular ATP amount	
B. Intracellular AMP amount	
C. Citrate amount	
D. Only a and b	Answer: F
E. All of the above	
33. Before amino acids can enter into glycolysis and TCA cycle, their amino group must b	e removed by a
process called:	
A. Decarboxylation	
B. Dehydrogenation	
C. Carboxylation	
D. Deamination	Answer: D
E. Immunization	
24. Carbobydrates and fats are considered high energy feed because:	
54. Carbonydrates and fats are considered fight energy food because.	
A. They have a lot of oxygen atoms	
A. They have a lot of oxygen atomsB. They have no nitrogen in their makeup	
 A. They have a lot of oxygen atoms B. They have no nitrogen in their makeup C. They can have short carbon skeletons 	
 A. They have a lot of oxygen atoms B. They have no nitrogen in their makeup C. They can have short carbon skeletons D. They have a lot of electrons associated with hydrogen 	,
 A. They have a lot of oxygen atoms B. They have no nitrogen in their makeup C. They can have short carbon skeletons D. They have a lot of electrons associated with hydrogen E. They are easily reduced 	Answer: D
 A. They have a lot of oxygen atoms B. They have no nitrogen in their makeup C. They can have short carbon skeletons D. They have a lot of electrons associated with hydrogen E. They are easily reduced 35. How many electrons are needed to pass the electron transport chain of the mitochomic pass the electron transport pass t	Answer: D
 A. They have a lot of oxygen atoms B. They have no nitrogen in their makeup C. They can have short carbon skeletons D. They have a lot of electrons associated with hydrogen E. They are easily reduced 35. How many electrons are needed to pass the electron transport chain of the mitocho formation of one molecule of water?	Answer: D
 A. They have a lot of oxygen atoms B. They have no nitrogen in their makeup C. They can have short carbon skeletons D. They have a lot of electrons associated with hydrogen E. They are easily reduced 35. How many electrons are needed to pass the electron transport chain of the mitocho formation of one molecule of water? A. 1 	Answer: D
 A. They have a lot of oxygen atoms B. They have no nitrogen in their makeup C. They can have short carbon skeletons D. They have a lot of electrons associated with hydrogen E. They are easily reduced 35. How many electrons are needed to pass the electron transport chain of the mitocho formation of one molecule of water? A. 1 B. 2 	Answer: D
 A. They have a lot of oxygen atoms B. They have no nitrogen in their makeup C. They can have short carbon skeletons D. They have a lot of electrons associated with hydrogen E. They are easily reduced 35. How many electrons are needed to pass the electron transport chain of the mitocho formation of one molecule of water? A. 1 B. 2 C. 4 	Answer: D
 A. They have a lot of oxygen atoms B. They have no nitrogen in their makeup C. They can have short carbon skeletons D. They have a lot of electrons associated with hydrogen E. They are easily reduced 35. How many electrons are needed to pass the electron transport chain of the mitocho formation of one molecule of water? A. 1 B. 2 C. 4 D. 6 	Answer: D
 A. They have a lot of oxygen atoms B. They have no nitrogen in their makeup C. They can have short carbon skeletons D. They have a lot of electrons associated with hydrogen E. They are easily reduced 35. How many electrons are needed to pass the electron transport chain of the mitocho formation of one molecule of water? A. 1 B. 2 C. 4 D. 6 E. 2 from NADH and 1 from FADH₂ 	Answer: D ndria for the Answer: B
 A. They have a lot of oxygen atoms B. They have no nitrogen in their makeup C. They can have short carbon skeletons D. They have a lot of electrons associated with hydrogen E. They are easily reduced 35. How many electrons are needed to pass the electron transport chain of the mitocho formation of one molecule of water? A. 1 B. 2 C. 4 D. 6 E. 2 from NADH and 1 from FADH2 36. Which process in eukaryotic cells will proceed normally whether oxygen (O ₂) is preserved.	Answer: D ndria for the Answer: B
 A. They have a lot of oxygen atoms B. They have no nitrogen in their makeup C. They can have short carbon skeletons D. They have a lot of electrons associated with hydrogen E. They are easily reduced 35. How many electrons are needed to pass the electron transport chain of the mitocho formation of one molecule of water? A. 1 B. 2 C. 4 D. 6 E. 2 from NADH and 1 from FADH2 36. Which process in eukaryotic cells will proceed normally whether oxygen (O ₂) is present.	Answer: D ndria for the Answer: B ent or absent?
 A. They have a lot of oxygen atoms B. They have no nitrogen in their makeup C. They can have short carbon skeletons D. They have a lot of electrons associated with hydrogen E. They are easily reduced 35. How many electrons are needed to pass the electron transport chain of the mitocho formation of one molecule of water? A. 1 B. 2 C. 4 D. 6 E. 2 from NADH and 1 from FADH₂ 36. Which process in eukaryotic cells will proceed normally whether oxygen (O ₂) is pressed. A. Electron transport B. Glycolysis 	Answer: D ndria for the Answer: B ent or absent?
 A. They have a lot of oxygen atoms B. They have no nitrogen in their makeup C. They can have short carbon skeletons D. They have a lot of electrons associated with hydrogen E. They are easily reduced 35. How many electrons are needed to pass the electron transport chain of the mitocho formation of one molecule of water? A. 1 B. 2 C. 4 D. 6 E. 2 from NADH and 1 from FADH2 36. Which process in eukaryotic cells will proceed normally whether oxygen (O ₂) is pressed. A. Electron transport B. Glycolysis C. The citric acid cycle 	Answer: D ndria for the Answer: B ent or absent?
 A. They have a lot of oxygen atoms B. They have no nitrogen in their makeup C. They can have short carbon skeletons D. They have a lot of electrons associated with hydrogen E. They are easily reduced 35. How many electrons are needed to pass the electron transport chain of the mitocho formation of one molecule of water? A. 1 B. 2 C. 4 D. 6 E. 2 from NADH and 1 from FADH₂ 36. Which process in eukaryotic cells will proceed normally whether oxygen (O₂) is pressed. A. Electron transport B. Glycolysis C. The citric acid cycle D. Oxidative phosphorylation 	Answer: D ndria for the Answer: B ent or absent?
 A. They have a lot of oxygen atoms B. They have no nitrogen in their makeup C. They can have short carbon skeletons D. They have a lot of electrons associated with hydrogen E. They are easily reduced 35. How many electrons are needed to pass the electron transport chain of the mitocho formation of one molecule of water? A. 1 B. 2 C. 4 D. 6 E. 2 from NADH and 1 from FADH2 36. Which process in eukaryotic cells will proceed normally whether oxygen (O₂) is press A. Electron transport B. Glycolysis C. The citric acid cycle D. Oxidative phosphorylation E. Chemiosmosis 	Answer: D ndria for the Answer: B ent or absent? Answer: B

37. The energy responsible for ATP production during cellular respiration:

- A. Heat energy
- B. Light energy
- C. Food
- D. Proton motive force
- E. None of the above

38. Chemiosmosis ATP synthesis (oxidative phosphorylation) occurs in:

A. All respiring cells, both prokaryotic and eukaryotic, using oxygen or other electron acceptors

Answer: D

Answer: A

- B. All cells, but only in the presence of oxygen
- C. Only in mitochondria, using either oxygen or other electron acceptors
- D. Only in eukaryotic cells, in the presence of oxygen
- E. Only in prokaryotic cells, in absence of oxygen

